

www.godsendbattery.com

Product Introduction

Godsend's 3.6V 25Ah NCM battery is designed based on NiCoMn Composite technology with low impedance and high output. It is ideal for power intensive devices like electric car, E-bike, E-Scooter, E-tricycle, E-motorcycle, E-golf cart, E-wheelchair and so on.

Specifications

Item	Specification
Model	GSNCM46160M-25
Rated capacity	25Ah
Rated voltage	3.6V
Standard charge	1C (25A)
current	
Max. continuous	4C (100A)
discharge current	
Max. instant	8C (200A)
discharge current	
Impedance	≤1.5mΩ
Weight	600 ± 10 g
Dimensions	Height: 178±1mm
	Diameter: 46 ± 0.5 mm
Operating	Charge: -20~45℃
temperature	Discharge: -20~60°C
Storage temperature	-10~35℃

Characteristic

- Rechargeable, no memory effect, highly efficient, charge anytime
- Clean and Green energy, no toxic material contained
- Extended long life cycle > 2000 times at 1C rate and 100% DOD
- Supports high speed charge and discharge
- Resist overcharging, short circuit, forced discharging, vibration, mechanical shock and crush
- ➤ We can charge under -20°C with our own BMS

Safety performance

- 1. Over charge
 - After standard charging, the battery continues charge at 1C (A) to voltage of 5V or continue charge at 1C(A) for 90 min. No fire or explosion happens.
- 2. Over discharge
 - After standard charging, the battery continues discharge at 1C(A) to voltage of 0V

www.godsendbattery.com

at 20±5°C. No fire, no explosion or no leakage happens.

3. Short Circuit

After standard charging, put the battery into a blast-proof cabinet and short-circuit the battery (general resistance of the circuit shall be no more than 5 m Ω) for 10 minutes. No fire or explosion happens.

4. Crush

After standard charging, keep the battery between two pieces of iron plate and let the electrode surface be paralleled to the iron plate. Put a 13 KN pressure on the iron plate. No fire or explosion happens.

5. Hot oven

After standard charging, heating the box from room temperature to 130° C a rate of 5° C/min. Keep the battery in the box under 130° C for 30 minutes. No fire or explosion happens.

6. Drop

After standard charge. Let the battery fall from a height of 1.5 m. No fire, no explosion or no leakage happens.

7. Needle puncture

After standard charging, stab the cell with a steel pin (ϕ 3mm \sim ϕ 8mm) at the speed of 20 \sim 30 mm/s. Observe it more than 1 h. No fire or explosion happens.

8. Hit

After standard charging, put a steel bar (with 7.9 mm diameter and 70 mm length) in the middle of battery surface, parallel to cell electrode surface and perpendicular to battery electrode. Make a steel ball with a weight of 9.1 kg fall from a height of 61 cm to the stick. No fire or explosion happens.